Disjoining Pressure Effects in Ultra-Thin Liquid Films in Micropassages—Comparison of Thermodynamic Theory With Predictions of Molecular Dynamics Simulations
نویسندگان
چکیده
The concept of disjoining pressure, developed from thermodynamic and hydrodynamic analysis, has been widely used as a means of modeling the liquid-solid molecular force interactions in an ultra-thin liquid film on a solid surface. In particular, this approach has been extensively used in models of thin film transport in passages in micro evaporators and micro heat pipes. In this investigation, hybrid PT molecular dynamics (MD) simulations were used to predict the pressure field and film thermophysics for an argon film on a metal surface. The results of the simulations are compared with predictions of the classic thermodynamic disjoining pressure model and the Born-Green-Yvon (BGY) equation. The thermodynamic model provides only a prediction of the relation between vapor pressure and film thickness for a specified temperature. The MD simulations provide a detailed prediction of the density and pressure variation in the liquid film, as well as a prediction of the variation of the equilibrium vapor pressure variation with temperature and film thickness. Comparisons indicate that the predicted variations of vapor pressure with thickness for the three models are in close agreement. In addition, the density profile layering predicted by the MD simulations is in qualitative agreement with BGY results, however the exact density profile is dependent upon simulation parameters. Furthermore, the disjoining pressure effect predicted by MD simulations is strongly influenced by the allowable propagation time of injected molecules through the vapor region in the simulation domain. A modified thermodynamic model is developed that suggests that presence of a wall-affected layer tends to enhance the reduction of the equilibrium vapor pressure. However, the MD simulation results imply that presence of a wall layer has little effect on the vapor pressure. Implications of the MD simulation predictions for thin film transport in micro evaporators and heat pipes are also discussed. DOI: 10.1115/1.2349504
منابع مشابه
Model of Meniscus Shape and Disjoining Pressure of Thin Liquid Films on Nanostructured Surfaces with Electrostatic Interactions
The effect of electrostatic interactions on the stability of thin liquid films on nanostructured surfaces is important in lubrication, wetting, and phase change but is poorly understood. In this study, a general, closed-form model is developed to account for both the effects of electrostatic and van der Waals interactions on meniscus shape and disjoining pressure for thin liquid films on nanost...
متن کاملMolecular dynamics simulations of disjoining pressure effect in ultra-thin water film on a metal surface
Molecular dynamics (MD) simulations are used to examine the disjoining pressure effect of a water thin film adsorbed on a metal surface. The model was validated against experiments and verified against previous MD simulations. The variation of vapor pressure with film thickness was examined for a water thin film adsorbed on a gold surface. The results agree well with the classic disjoining pres...
متن کاملEffect of Ionic Correlations on the Surface Forces in Thin Liquid Films: Influence of Multivalent Coions and Extended Theory
Experimental data for the disjoining pressure of foam films stabilized by anionic surfactant in the presence of 1:1, 1:2, 1:3, and 2:2 electrolytes: NaCl, Na₂SO₄, Na₃Citrate, and MgSO₄ are reported. The disjoining pressure predicted by the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory coincides with the experimental data in the case of a 1:1 electrolyte, but it is considerably greater than the...
متن کاملInvestigation of isomorph-invariance in liquid methane by molecular dynamics simulation
In this paper, isomorph invariance of liquid methane is investigated by means of constant-NVT molecular dynamics simulations. According to the data extracted from simulations, equilibrium fluctuations show strong correlation between potential energy U and virial W. We also generated isomorph state points and investigated invariance of certain thermodynamic, structural, and dynamical properties....
متن کاملParameter passing between molecular dynamics and continuum models for droplets on solid substrates: the static case.
We study equilibrium properties of polymer films and droplets on a solid substrate employing particle-based simulation techniques (molecular dynamics) and a continuum description. Parameter-passing techniques are explored that facilitate a detailed comparison of the two models. In particular, the liquid-vapor, solid-liquid, and solid-vapor interface tensions, and the Derjaguin or disjoining pre...
متن کامل